Triple your Results with Predictive Maintenance

Triple your Results with Predictive Maintenance

The latest industry report, Predictive Maintenance in Oil & Gas, analyses how recent advancements in cloud-based data analytics and the rise of digital twins in oil and gas operations are extending the boundaries of predictive maintenance technologies. Digitalization is changing the way organizations work. Manufacturing enterprises have slowly started to embrace the culture of cross-functional working. As a result, employees are able to capitalize on digital technologies.

Moreover, manufacturing companies have a vision of robust digital culture where everyone from meeting chambers to the factory floor understands the potential of data analytics. That being the case, let’s dig deeper into how Oil and Gas (O&G) industries are leveraging predictive maintenance to aim toward digital maturity.

Predictive Maintenance: Case Studies

O&G companies are slowly considering a digital leap to advanced analytics and visualization so that engineers can better pinpoint the potential hazards in their pipeline network. 

Case Study 1

A multinational pipeline company faced a challenge in detecting the roadblocks in the pipeline network. Firstly, the system integrated 132 discrete sets of pipeline data collected by in-line inspection tools, strain sensors, LiDAR remote sensors, etc. Second, the engineers visualized 3D pipeline networks by processing the vast quantity of data in real-time. Lastly, this granted them to predict and visualize the zones where potential hazards, including dents, cracks, corrosion, and strain, may occur, as well as track the parameters (geological and operational) responsible for risks to integrity.

Learn more about 4 Best Ways to Detect a Defect in Production Line

Case Study 2

Another case study is of a global aviation fuel supplier. They tackled the challenges such as aviation fuel traffic management and aviation fuel volume measurement ambiguity. Along with, unplanned scheduling of the technological systems. These systems such as access control units, batch controllers, and SAP/ERP systems help to seamlessly monitor the aviation fuel supply.

Importantly, the company tackled challenges with the help of leading US technology and manufacturing firms. Further, the company augmented a predictive maintenance system by adding aspects such as demand fluctuations, folio reconciliation, and product transfer and exchange agreements. Also, these aspects added flexibility in responding to volatile market changes and scale operations as required.


Impact on the Oil and Gas Industry 

The evident perk of predictive maintenance in the O&G Industry is that it maximizes runtime. Besides, it also predicts, and then engineers can fix out repairs much before a breakdown in the pipeline. Additionally, when O&G operations break down, it can have a significant domino effect on the energy supply. In consequence, making predictive maintenance technology is a key ally for companies in the sector.

According to recent estimates, effective prediction of leakage incidents could avoid a potential loss of nearly US$30 billion per annum for US pipeline companies; such savings could fund almost 50 percent of the midstream Capex required by 2030.

Also, mandatory maintenance efforts can be arranged to minimize system-wide downtimes. Predictive maintenance can further be used to ease operational expenses and environmental risks arising due to equipment breakdown. Lastly, in the context of the Oil industry, companies have adopted an advanced data analytics approach for predictive equipment failure in their refinery operations.

Most Popular

Let's Connect

Please enable JavaScript in your browser to complete this form.

Join Factspan Community

Subscribe to our newsletter

Related Articles

Add Your Heading Text Here

Case Studies

GenAI-Powered Transformation: Optimizing Hospital Reporting for Improved Patient Care

Executive Summary In a strategic initiative, a prominent hospital chain in …

Read More ...
Case Studies

Transforming Merchandising Efficiency – DataMigration with MuleSoft and Snowflake

Executive Summary Factspan Analytics addressed a critical business challenge for a …

Read More ...

Meta’s LLAMA 2 Vs Open AI’s ChatGPT

Explore the world of cutting-edge AI with a detailed analysis of Meta’s LLaMA and OpenAI’s ChatGPT. Uncover their workings, advantages, and considerations to help you make the right choice for your specific needs. Dive into the future of AI and its profound impact on content creation and data analysis.

Read More ...

Data Contract Implementation in a Kafka Project: Ensuring Data Consistency and Adaptability

Data contracts are essential for ensuring data consistency and adaptability in data engineering projects. This blog explains how to implement data contract in a Kafka project and how it can be utilized to solve data quality and inconsistency issues.

Read More ...
Webinar & Events

Chaos to Control in Generative AI era: Laying the foundation through Data Governance & Engineering

In today’s data-driven world, businesses face numerous challenges, from ensuring consistent …

Read More ...

CDP: A band-aid solution?

Step into the world of Customer Data Platforms (CDPs) with our captivating blog, designed to guide you through every angle. Discover the origin story of CDPs – why they stepped into the spotlight. Uncover their true essence and explore the four common categories they belong to. Delve into real-life scenarios with eight compelling use cases that are revolutionizing businesses today. Tackle the question: are CDPs a quick fix or a sustainable solution? And don’t shy away from addressing the challenges that come with CDP territory. Wrapping it all up, you’ll find key takeaways that provide fresh insights into this dynamic technology.

Read More ...